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Abstract A new method, dubbed “HAXIS” is introduced to
describe local and global shape properties of a protein helix via
its axis. HAXIS is based on coarse-graining and spline-fitting
of the helix backbone. At each Ca anchor point of the back-
bone, a Frenet frame is calculated, which directly provides the
local vector presentation of the helix. After cubic spline-fitting
of the axis line, its curvature and torsion are calculated. This
makes a rapid comparison of different helix forms and the
determination of helix similarity possible. Distortions of the
helix caused by individual residues are projected onto the helix
axis and presented either by the rise parameter per residue or by
the local curvature of the axis. From a non-redundant set of
2,017 proteins, 15,068 helices were investigated in this way.
Helix start and helix end as well as bending and kinking of the
helix are accurately described. The global properties of the
helix are assessed by a polynomial fit of the helix axis and
the determination of its overall curving and twisting. Long
helices aremore regular shaped and linear whereas short helices
are often strongly bent and twisted. The distribution of different
helix forms as a function of helix length is analyzed.

Keywords Protein helices . Helix axis . Helix bending .

Helix twisting . Helix kinking

Introduction

The helix is one of the most common and most regular
secondary structure elements (SSEs) in proteins [1–3]. Its

shape is determined by the right-handed (or left-handed) spiral
conformation of the protein backbone, in which H-bonding
between the peptide NH group and carbonyl group provides
suitable stability of the structure. Helices can be described
from a biochemical point of view (via the frequency of H-
bonding links measured by the number of residues per helix
turn), a mathematical one (via the dimensions of a
circumscribed cylinder), or with the help of a geometrical
approach utilizing the radius R of the helix turns, the pitch p
of the helix, the rise a of the helix per residue, or the phase
angle g per residue, which are all related to the dihedral angles
ϕi and ψi of the residues i (see Fig. 1). A global feature of an
ideal helix is the helix axis, which is given by the axis of the
circumscribed cylinder. This axis is associated with a vector
pointing from the helix start to the helix end thus defining both
the direction of the helix and its position in the three-
dimensional (3D) structure of the protein.

The helix axis has been used in protein investigations for
visualization purposes [4], in 3D-structure analyses [5], for the
description of helix packing [6–10], or the comparison of
protein structures [11, 12]. In most of these investigations a
simplified linear model of the helix axis was assumed [13, 14]
although helices and their axes can be bent, twisted, or even
kinked [15]. There are a variety of mathematical procedures to
define a linear helix axis (and the associated axis vector) using
various fitting approaches [13, 14, 16–18].

More realistic representations of the helix axis have to
consider a possible bending or other irregularities of the helix
axis [6]. A linear model can only approximate the real form of
an axis, and therefore can lead to a misinterpretation of helix
form and helix stability. Helices in proteins can be flexible,
thus giving a protein a larger possibility of adjusting to its
environment and to external forces. Because of this, methods
have been developed that determine the bending or curving of
a helix as reflected by the shape of the helix axis. Among these
methods, the local axis methods used in HBEND [15, 19], the
programs HELANAL [20–23] and P-CURVE [24], the

Z. Guo : E. Kraka :D. Cremer (*)
Department of Chemistry, Southern Methodist University,
3215 Daniel Ave, Dallas,
TX 75275-0314, USA
e-mail: dcremer@smu.edu

E. Kraka
e-mail: ekraka@gmail.com

J Mol Model (2013) 19:2901–2911
DOI 10.1007/s00894-013-1819-7



QHELIX method [25] (based on the algorithms by Kahn [16,
26]), and the MC-HELAN algorithm [27] may be mentioned.
Since the definition of the axis of a helix with just one or two
turns is questionable, most of the algorithms developed consid-
er helices with more than two turns. For example, HELANAL
considers only helices with nine residues or more.

The current work is part of a project aimed at the com-
putational description of proteins with methods based on
coarse-graining, i.e., the atomistic presentation of the pro-
tein will be sacrificed for the benefit of obtaining the overall
shape of a protein accurately. This approach requires differ-
ent descriptions of a protein than those provided by
Cartesian or internal coordinates. The overall shape of the
latter can be described correctly, as we have shown in
previous work [28], by using Frenet coordinates. In this
work, we will apply this approach to helices to accomplish
three objectives: (1) finding the right basis for a coarse-
grained description of a protein helix; (2) determining the
overall shape of a protein helix with accuracy without refer-
ring to an atomistic description; (3) rapidly comparing ex-
perimentally and computationally determined helix
structures and evaluating helix similarity in a quantitative
manner. The method presented here will be (among other
similar approaches) the basis of parameterizing a suitable
protein force field in a totally new way, which no longer
depends on an atomistic approach.

Towards these objectives, we introduce a new definition
and description of the helix axis, which combines four differ-
ent features of a helix: (1) by a suitable projection technique
we absorb all deviations from an ideal turn in the helix axis;
(2) we quantify the local bending and wiggling of the helix
axis by its curvature and torsion; (3) with the help of a
polynomial fit, we smooth the helix axis obtained and then
determine its overall bending and twisting; (4) finally, we

determine the overall length and direction of the helix axis
as it changes from the start to the end. This procedure, dubbed
the HAXIS method, is applied to a set of 2,017 proteins with
more than 15,000 helices. In this way, we obtain a detailed
description of the (ir)regularities of helices, a clear definition
of helix start and helix end, a detailed insight and a classifi-
cation of helix bending, twisting, and even kinking, and a way
of separating coils and short helices from normal helices.
Since the axis is developed residue by residue to absorb
irregularities in the residue conformations, and by this the
turns of the helix, it is appropriate to speak of a helix axis
only when three (or more) residues are present. In this way, a
method is obtained that can be applied to the description of
coils and very short helices as well as normal helices.

Computational procedures

In previous work, we have used Frenet frames and the
associated scalar parameters curvature and torsion to de-
scribe the backbone of a protein [28]. For this purpose, we
applied a coarse-grained representation of the backbone by
choosing the Ca atoms of the residues as anchor points of
the backbone, and converted the latter into a continuous
smooth line in 3D-space by connecting the positions of the
Ca anchor points with the help of a cubic spline fit.
Curvature and torsion values at the anchor points of the
continuous backbone line adopt characteristic values for a
given SSE, which in this way can be identified and charac-
terized easily [28].

In Fig. 1a, the backbone line of a helix is shown. A Frenet
frame consisting of unit tangent vector T, unit normal vector
N, and unit binormal vector B is depicted at the position of
an anchor point of a residue. Vectors T, N, and B are

Ni

Ni+1

Ai

axis
ai

p

γi

R

axis

residue anchor points

a b

N

T

B

N
T

B

i

i+1

i-1

Fig. 1 a The helix of an ideal
protein is represented as a smooth
line determined by the positions
of the Ca atoms (dots), which are
the reference points of the spline-
fitted backbone line. The
following parameters of the helix
are shown: R radius of the helix,
p pitch, ai rise parameter for
residue i, γi corresponding phase
angle. Two Frenet frames with
unit tangent vector T, unit normal
vectorN, and unit binormal vector
Bi are also shown. b The direction
of the helix axis Ai at residue
anchor point i is determined from
the cross product of unit normal
vectors Ni and Ni+1 as indicated
by the dashed arrows
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determined with the program APSA (Automated Protein
Structure Analysis) [29] in the course of the calculation of
curvature and torsion for each Ca of the protein backbone.
Once the three Frenet vectors are available, calculation of
the helix axis is straightforward and can proceed according
to two different procedures.

In the first, the cross product of the unit normal vectors Ni

and Ni+1 of subsequent residues i and i+1 is taken thus
yielding a vector Ai (Fig. 1b), which determines the direc-
tion of the helix axis at residue i. The subsequent cross
product Ni+1 × Ni+2 yields the direction vector Ai+1, which,
for an ideal helix, coincides with the axis vector Ai. For a
real (non-regular) helix, the direction of the latter deviates
slightly from that of the former, thus reflecting deviations in
the structure of the helix as they are caused by conforma-
tional irregularities of individual residues. In this way, all
distortions of the turns of a real helix caused by individual
residues are reflected by the changes in the direction of the
helix axis. Maximally, there can be m−1 changes for a helix
consisting of m residues. Although it is of little use to speak
of an axis in a global sense when considering the first and
second turn of a helix, the helix axis as a local descriptor of
irregularities in the residue-by-residue buildup of the helix is
meaningful from the first residues on and therefore will be
used in this work.

Despite the fact that the calculation of the helix axis
via the cross products of the unit normal vectors is
straightforward, it will lead to small errors in the helix
direction if the angle between Ni and Ni+1 becomes
small. A mathematically more stable procedure of the
piecewise calculation of the helix axis is obtained by
utilizing the unit vectors T and B of a Frenet frame and
obtaining the axis vector A from vector addition rather than
a cross product. For the purpose of clarifying the basis of this
second procedure, inspect Fig. 2a,b.

When looking from the top of a helix along its axis and
shifting all unit binormal vectors Bi so that their starting
points are identical to the origin of a sphere with unit radius,
the end points of the vectors Bi of all residues form a circle
(squares in Fig. 2a) on the surface of the sphere. The same is
true if the starting points of the unit tangent vectors Ti are
moved to the origin of the sphere (red points in Fig. 2a). In
the case of an ideal helix, the center of the binormal circle
and the tangent circle coincide and determine the direction
of the helix axis (Fig. 2a). In case of a real helix with
irregularities, the axis direction can change from residue i
to residue i+1. This is considered by determining the
changes in the directions of vectors Bi and Ti from residue
i to residue i+1. In the case of an a-helix, the changes in the
orientation angles will be close to 90° where Ti and Bi

define one plane (shown in Fig. 2b) and vectors Bi+1 and
Ti+1 a second plane (not shown in Fig. 2b), which is almost
orthogonal to the first.

One can show that, for the distances between end points Bi

and B i+1 (Ti and Ti+1), i.e., bi ¼ Biþ1 � Bij j and
ti ¼ Tiþ1 � Tij j relationship (1) is fulfilled:

rb
rt

¼ bi
ti

ð1Þ

where rb and rt are the radii of the circles shown in Fig. 2b as
defined by two residue points n and n+1. The local direction
of the axis vector Ai can be calculated from Eq. (2):

Ai ¼ rtBi þ rbTi ð2Þ
Using this procedure for all m residues of a helix, the total

axis is the result of m−1 individual axis vectors, which in the
case of a distorted helix point in slightly different directions
and have slightly different lengths ai. Distances ai give
always the shortest distance between two consecutive nor-
mals associated with the anchor points of the corresponding
residues and, accordingly, provide a measure for the rise in
the helix per residue i.

We have applied two different procedures to assess local
distortions of the helix at position n. First, we used the calcu-
lated parameters ai and compared themwith the regular rise of
the helix as found in an ideal helix of the a, 310 or π-type
(Table 1) [24]. Then, we utilized cubic spline fitting to convert
the zigzagging axis line of a real (distorted) helix into a
smooth line, for which we determine torsion and curvature
at each residue anchor point. Both approaches provide sensi-
tive measures for local distortions of the helix as caused by the
nature of the residue in question.

To investigate the overall shape of a helix as caused by
bending, torsion, or even kinking, we utilized a second order
polynomial fit of the helix axis to obtain a smooth line with
overall curving and well-defined direction vectors at its start
and end points. In addition, third order polynomial fits were
applied to test the non-planarity of a bent helix axis via its
torsion, which can be considered as a measure for axis curva-
ture in three dimensions. Fifth order polynomial fits were used
to describe those helices, with distinct kinks that split the helix
into two parts. The polynomial fits make it possible to pro-
vide, beside the local, also the global features of a helix via the
properties of its axis. This investigation was carried out for
helices with at least two turns, i.e. seven residues or more,
because the global features of a helix are meaningful only in
these cases. The analysis of local helix features, however, was
carried out from the third residue on.

The calculation of the helix axis and the various analysis
methods of the axis (global and local; second, third and fifth
order polynomial fits and cubic spline fitting; calculation of
Frenet frames leading to curvature and torsion; calculation
of rise parameters ai, helix radius R, and pitch p; statistical
analysis, graphic presentations) are summarized in the pro-
gram HAXIS, which is part of the APSA program [29] and
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can be obtained via the APSA webpage from the authors
(http://smu.edu/catco/apsa.html).

Results and discussion

A non-redundant dataset of 2,017 protein X-ray structures
taken from the PDB [30] was selected, for which 15,068
helices with three or more residues were investigated. Of
these, 11,761 helices possess seven residues or more. All
protein structures considered had a resolution of 2 Å or better.
Proteins with structure breaks or with ambiguous Ca positions
were excluded from the analysis.

In Table 1, properties of ideal a, 310 and π helices in
polyalanines presented by smooth backbone lines are listed.

The backbone lines are fitted to the anchor point of each
residue as given by the position of the Ca atoms. Rise
parameter a per residue, radius R, pitch p, and phase
angle g per residue are clearly distinguishable for the three
types of helices and clearly reflect the tighter winding of a
310-helix and the looser one of a π-helix (Table 1). For
each of the ideal helices, the axis is a straight line with
zero curvature and zero torsion, constant a, p, R, and g
values for each of the residues.

Global description of helix shape utilizing properties
of its axis

In Table 2, the properties of some selected examples of real
helices in proteins (reflected by their axes) are listed. They
can be divided into three groups according to the bending of
the helix axis. The bending is characterized by the average
curvature κav, the maximum and minimum curvature
κ(max) and κ(min) of the helix axis, the variation in the
curvature Δk ¼ k maxð Þ � k minð Þ, and the ratio ηk ¼ Δk=
kav (κ values always in units of Å

−1). Since the curvature values,
apart from kinking situations, are rather small, it is easier to
compare values CðsÞ ¼ 1=kðsÞ where C(s) is the radius of the
osculating circle (associated with the curving of the helix axis)
at an axis position defined by the arclength s. In this way
parameters Cav, C(max), C(min), ΔC ¼ C maxð Þ � C minð Þ ,

rt rb

O

Bi

Ti

Ai

a b

Fig. 2 a If the unit binormal vectors Bi of all anchor points of a helix are
moved to a common origin,O, and the unit tangent vectorsTi to the same
point, their end points lie on two circles on the surface of the
circumscribed sphere with unit radius and origin O. b The associated
vectors Ti and Bi lie on a slice through the sphere where the trace of the
sphere is given as a unit circle and the diameters of the surface circles

appear as secants of this unit circle. The parameters rb and rt give the
radius of binormal and tangent circle, respectively, and make it possible to
calculate the direction of the axis vectorAi, which for an ideal helix is the
same for all i. For a real helix, the surface circles are distorted and require
the tangent-binormal pairs of residues i and i+1 (see text) for the calcu-
lation of a circle arc (i.e., the corresponding axis direction Ai)

Table 1 Properties of ideal helices

Helix Rise
a [Å]

Radius
R [Å]

Angle
g [°]

Residues
per turn

Pitch
p [Å]

ϕ [°] ψ [°]

a 1.517 2.274 100.1 3.6 5.458 −57 −47a

310 1.955 1.868 121.5 3.0 5.793 −49 −26a

π 0.979 2.714 85.2 4.2 4.138 −57 −70b

a Ideal dihedral angles from Barlow and Thornton [15]
b Ideal dihedral angles from Armen and co-workers [38]
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and ηC ¼ ΔC=Cav (C is always given in Å) are determined.
The values listed in Table 2 are representative for 11,761 helices
with seven or more residues. The distribution of the κav and Δκ
values of the 11,761 helices are shown in form of bar diagrams
in Figs. 3a and 4a, respectively.

Utilizing calculated Cav and ηC values of the helix axis,
protein helices with different forms of distortion can be clas-
sified in the following way.

(1) Linear and quasilinear helices have Cav values larger
than 100 Å, for example 333 in the case of 1RIB
(Table 2). About 18 % (2,155 helices) of all investigat-
ed helices fall into this class. According to Fig. 3, these
are especially long helices with more than 13 residues.
These helices are quite regular as is reflected by a low
value of the ratio ηC≤0.2 and a small variation in rise
per residue values ai and pitch values P.

(2) Helices with a moderately bent axis possess Cav values
between 30 and 100 Å (0.01≤κav≤0.03 Å−1) represent
the majority of all helices: about 54 % or 6,321 helices.

In this group, there are especially helices with an average
length of 12.7 residues (predominantly 12, up to as many
as 33 residues).

(3) Helices with strongly bent or curved axes possess Cav

values smaller than 30 Å (κav≥0.03 Å−1) and represent
the second largest group of all helices: about 28 % or
3,285 helices. In this group, there are short helices with
an average length of 10.4 residues (predominantly 7 to
11 residues). Bending of the helix axis is mostly not
regular and therefore one should speak of differently
curved axes.

The regularity of a helix is reflected by the ratio ηK or ηC
derived from the range of κ or C values and divided by the
corresponding averages. These regularity descriptors do not
necessarily correlate with the curving and twisting of the
helix axis in the way that large curvature (torsion) also
implies large irregularities. We find, however, a relationship
between relatively long, (quasi)linear or moderately bent
helices, which predominantly show high regularity as

Table 2 Properties of real helices calculated with HAXIS and compared to those obtained with HELANAL and HBEND. Not all digits are given
for the curvature values κav to obtain the precise ηk and C values

Protein (PDB)a Helix residues κav [Å
−1] Δκ [Å−1] ηk = Δκ/κav Cav [Å] ΔC [Å] ηC = ΔC/Cav Comp.b C [Å] Type

1RIB 102–129 0.003 0.0001 0.05 333 17 0.05 140 Linear

1BGE 144–169 0.013 0.0020 0.15 78 12 0.16 73 Curved

1LIS 44–74 0.030 0.0140 0.47 34 19 0.56 25 Kinked

1LIS 44–61 0.026 0.0030 0.12 39 5 0.13 Curved

1LIS 62–74 0.023 0.0020 0.08 43 8 0.19 Curved

2TMN 281–295 0.008 0.0012 0.16 129 20 0.16 100 Linear

9PAP 25–42 0.006 0.0005 0.08 167 14 0.08 78c Linear

1MBD 101–118 0.003 0.0001 0.03 311 11 0.03 184 Linear

1BP2 3–11 0.008 0.0002 0.03 131 4 0.03 53c Linear

1BP2 39–54 0.008 0.0014 0.16 119 19 0.16 112 Linear

1BP2 89–106 0.006 0.0001 0.02 163 3 0.02 71c Linear

5CYT 87–100 0.005 0.0006 0.12 198 22 0.12 94 Linear

5CPA 174–186 0.007 0.0007 0.10 156 15 0.10 71c Linear

4LZT 25–35 0.025 0.0016 0.06 41 3 0.07 58 Curved

1MBD 124–149 0.011 0.0007 0.06 91 6 0.07 88 Curved

7RSA 24–33 0.048 0.0090 0.19 24 4 0.20 34 Curved

1MBD 59–77 0.013 0.0004 0.03 77 2 0.01 85 Curved

5CPA 15–27 0.014 0.0020 0.14 71 10 0.15 62 Curved

2OVO 34–43 0.020 0.0008 0.04 49 1.5 0.03 54 Curved

2TMN 136–151 0.033 0.0050 0.15 31 5 0.16 35c Curved

5CPA 72–89 0.034 0.0110 0.32 31 11 0.37 34c Kinked

1MBD 82–94 0.025 0.0170 0.66 41 27 0.66 24 Kinked

a 1RIB: ribonucleotide reductase protein R2 [39]; 1BGE: canine and bovine granulocyte-colony stimulating factor (G-CSF) [40]; 1LIS: Lysin [36];
2TMN: thermolysin [41]; 9PAP: papain [42]; 1MBD: oxymyoglobin [43]; 1BP2: bovine pancreatic phospholipase [44]; 5CYT: Cytochrome C [45];
5CPA: carboxypeptidase A [46]; 4LZT: egg-white lysozyme [47]; 7RSA: ribonuclease A [48]; 2OVO: silver pheasant ovomucoid [49]
b Comparative (Comp.) C values from Bansal and co-workers (HELANAL, first part of table) [21] and Barlow and Thorton (HBEND, second part
of table) [15]
c Indicates a deviation from the classification obtained with HAXIS and given in the last column

J Mol Model (2013) 19:2901–2911 2905



reflected by ηC � 0:15. This group comprises 50 % (5,889)
of all helices.

The group of helices with moderate irregularities
(0.15<ηC<0.35) comprises only 24 % (2,857) of all
helices and involves both moderately and strongly bent
helices. Finally, there is a group of helices with low
regularity (ηC≥0.35), the members of which are especial-
ly found among the short and strongly curved helices
(26 % corresponding to 3,015 helices).

The curving of an axis does not always occur in a plane,
as shown in Fig. 5 for a medium-sized helix. Hence, the
torsion of the helix axis is larger than zero and can adopt
values as large as 0.08 Å−1 (corresponding to a torsion
radius of 12.5 Å) as in the case shown in Fig. 5. To the best
of our knowledge, the torsion of protein helices has not yet
been investigated. The analysis of the average torsion tav of
the helix axis reveals that the majority of bent helices is also
twisted: more than 90 % of the helix axes possess a signif-
icant torsion value. About 20 % of them have low torsion
values (tav <0.04 Å

−1), 60 % have values 0.04<tav<0.28 Å
−1,

and 20 % values tav >0.28 Å−1, i.e. high torsion. Only
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9 % of all helices possess an axis, which bends in a plane
(tav < 0.01 Å−1).

The extensive twisting of the helix axis indicates the lim-
itations of any planar model of helix axis. It is interesting to
note in this connection that the position of largest curving of
the axis does not possess a significant torsion value and vice
versa, i.e., in the majority of all cases first order curvature
(curving in a plane) and second order curvature (twisting of
the axis out of a plane and leading to the torsion) are related to
each other in a helix.

Identification of kinked helices

Kinks are very common in transmembrane helices and have
attracted much interest [31, 32]. The identification of a helix
kink via H-bonding is often impossible because it requires a
detailed investigation of helix geometry [27]. In this study, we
identify helix kinking by both the global and the local

description of helix shape via its axis. According to the global
descriptors of the helix axis, helix kinking is given whenCav is
about 40 or less (moderate to strong bending) and
complemented by a irregularity descriptor ηC larger than
0.35. In this way, the kinked helices of Table 2 are identified.
We note that helix kinking splits one helix into two helices and
thereby affects the helix count. Also, a kinked helix has a
different functionality in protein structure than a normal helix
and in addition indicates a strong internal force [27, 33–35].
Therefore, the reliable identification of kinked helices is one
of the objectives of protein structure analysis [27, 33].

Comparison with other descriptions of the helix axis

The HELANAL [20–22] and the HBEND method [15] are
two established approaches to describe the shape of the helix
axis. Common to both methods is that, after an appropriate
calculation of the helix axis, the bending of the helix is

Fig. 5a,b Helix n of protein
1BGE {canine and bovine
granulocyte-colony stimulating
factor (G-CSF) [40]
(n=5; left)} and protein 1LIS
{Lysin [36]; (n=2; right).} a
Top: Ribbon presentation. The
calculated axes are given for all
helices by red tubes. Bottom:
Third order (1BGE, helix 5)
and fifth order (1LIS, helix 2)
polynomial fit (red points) for
the calculated axis points
(blue points). The perspective
drawing provides an impression
of the bending and twisting of
the helix axis, which is not
comprehended correctly when
using a projection of a helix
axis into a plane. b Top: Helix n
and trace of its fitted axis
(red dots). Bottom: Calculated
curvature of the axis of helix n
(based on a third or fifth order
polynomial fit of the helix axis)
as a function of the helix length
(counting the first residue of
helix n as residue 1)
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assumed to be regular and to take place in a plane so that a fit
of the helix axis to a circle of radius R is sufficient. The current
analysis reveals that such an assumption is an oversimplifica-
tion and therefore it is not surprising that the shape description
of helices obtained in this work differs from that given by
HELANAL and HBEND. Some examples are listed in
Table 2.

Deviations are found for all C values where in some cases
(indicated by a c-superscript in Table 2) deviations are so large
that they suggest a misleading classification of the shape of the
helix axis. The helix examples of 9PAP, 1BP2 (residues 3–11),
and 1BP2 (residues 89–106) are described by HBEND as
curved because of predicted C values between 50 and 80 Å.
According to HAXIS, the average C values (167, 131, 163,
Table 2) are significantly above 100 Å, thus identifying these
helices as typical examples of linear helices. Similarly, residues
136–151 in 2TMN form a helix that is described by HBEND
and HELANAL as being kinked whereas Cav and ηC (31, 0.16,
Table 2) are typical of a curved rather than kinked helix.

Local description of helix winding utilizing properties
of its axis

In Fig. 6, the rise parameters ai for all residues along a part of
protein Lysin (PDB id: 1LIS) (from residue 5 to residue 133)
[36] are shown according to residue number. As given in
Table 1 for ideal helices, the a-parameter is always below
2 Å for helices and, accordingly, five helices can be identified
(helix 1: residues 13–37; helix 2: 44–74; helix 3: 82–95; helix
4: 99–107; helix 5: 116–123; Fig. 6). These are interrupted by
six coils, which have a values typically larger than 2. Hence,
the a-parameters can be used effectively to determine the start
and the end of a helix and to describe coils. However, they are
less useful for the description of β-strands and turns, for which
curvature and torsion of the backbone line [28] provide a
better means. Hence, we have limited the use of the rise
parameters a to helices and closely related SSEs.

In the center of helix 2 shown in Fig. 6, a single a value of
3.16 Å associated with residue 61 of 1LIS denotes the pres-
ence of a kink (see also Table 3) as correctly identified in the
global description of the axis of helix 2 (Table 2, entry 1LIS;
see also Fig. 5a, right side). The curvature diagram based on
the spline-fitting of the axis points provides more details of
this kink (Fig. 7), which effects residues 60–63. As shown in
Table 3, the position of a kink can be identified easily for a
helix utilizing the rise parameters ai, which is unusually long
between the two residues positioned directly at the kink posi-
tion, thus reflecting the extra-strong bending of the helix axis
(Fig. 5b, right). The curvature of any smooth line, which
depends on the second derivative of the axis line with regard

helix 1 helix 2 helix 3 h 4 h 5

coil 1 coil 2

coil 3

coil 4

coil 5

coil 6
kink

1LIS

Fig. 6 Representation of the
rise parameter ai for protein
1LIS as a function of the
residue number. Five helices (h)
and six coils can be identified
(dashed lines give start and end
of helix). Residue 61 in helix 2
gives the position of a kink. For
identification of residues in
helix 2, cf. Fig. 7b

Table 3 Identification of kink position using both maximum rise
parameters a(max) and maximum curvature values of the spline-fitted
helix axis

Protein
(PDB) a

Residues a(max) [Å] Kink
positionb

Residues
involved in kinkc

1LIS 44–74 3.16 61 60–63

1MBD 82–94 2.58 86 85–88

1ECA 52–72 2.19 63 62–65

1A6M 83–95 2.66 86 85–88

1A8H 379–396 2.44 386, 391 385–388, 390–393

1AK0 236–263 2.94 241 240–243

1AH7 206–242 2.93 216 215–218

1ADE 183–199 3.22 193 192–195

1B8O 257–280 3.05 266 267–269

1C3D 20–37 2.43 25 24–27

a 1ECA: erythrocruorin [50]; 1A6M: myoglobin [51]; 1A8H: Thermus
thermophilus methionyl-tRNA synthetase [52]; 1AKO: p1 nuclease
[53]; 1AH7: phospholipase C [54]; 1ADE: adenylosuccinate synthe-
tase [55]; 1B8O: purine nucleoside phosphorylase [56]; 1C3D: human
C3d [57]
b According to a(max) values
c According to curvature values
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to the arc parameter s [37] is more sensitive to kinking and,
accordingly, leads to the quadruple-peak curvature pattern of
Fig. 7b involving four residues (T60, H61,W62, A63 in 1LIS,
Table 3). In this way, a kinking of the helix is identified easily
as is shown in Table 3 for ten examples. HELANAL does not
provide information about the exact kink position.

The curvature analysis reveals that curvatures peaks with
0.4≤κ≤1.0 Å−1 indicate increasingly strong bending.
Kinking is characterized by at least one curvature peak of
the quadruple configuration being larger than 1.0 Å−1. In
this way, 708 kinked helices of a total of 11,761 helices
investigated were identified, suggesting that, on average,
6 % of helices are kinked and an additional 4.8 % (564
helices) are strongly curved (0.6–1 Å−1). Another 5.8 %
(677 helices) shows small local irregularity with peak values
of 0.4–0.6 Å−1. Using the HELANAL method, Bansal and
co-workers [21] predicted 4 % of all helices being kinked.
The MC-HELAN method describes any non-linear helix as

being kinked [27]. Obviously, one needs an accurate de-
scription of the helix axis (as used in this work) to detect all
kinked helices and to distinguish them from strongly bent
helices.

Most kinked helices have an average curvature value
between 1 and 1.5 Å−1. The number of even more strongly
kinked helices decreases exponentially as shown in Fig. 8a.
The majority of kinked helices are relatively short (8–16
residues, Fig. 8b). This observation is in line with the fact
that long helices prefer a linear or quasilinear structure.
Short helices are less stable and respond to forces exerted
on the helix backbone first by bending and finally by
kinking.

Comparison with other methods

Table 2 compares results obtained with HAXIS with those
based on the programs HBEND [15, 19] and HELANAL
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Fig. 7 Curvature diagram of
the spline-fitted axis of helix
n in (a) protein 1BGE (n=5)
and (b) 1LIS (n=2). Bending as
well as kinking involves always
several residues: A155–S160 in
1BGE and T60–A63 in 1LIS.
Note that at the ends of the helix
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[20–23]. A comparison with other methods such as P-CURVE
[24], QHELIX [25], or MC-HELAN [27] is difficult because
these methods have objectives and/or use definitions that devi-
ate from the helix description performed with HAXIS. A
comparison with these methods is therefore beyond the scope
of this investigation.

P-CURVE focuses on secondary structure assignments. In
this connection, it can calculate the helix axis by a least-
squares minimization based on all backbone atoms. In a
complicated procedure, 14 parameters are determined that
describe the helix. Only the circular bend of the helix axis
can be calculated. The calculation of the axis curvature and
torsion is not possible. QHELIX is based on a method
suggested in the late 1980s by Kahn [16, 26] and determines
inter-helical angles. QHELIX can also calculate the trace of
the helix axis; however, it does not determine its curving or
torsion. In addition, it requires as input start and end of the
helix, which are automatically calculated by HAXIS. MC-
HELAN focuses on the description of helix kinks where the
definition of a kink deviates from that normally used in protein

structure analysis (also used by HAXIS): for MC-HELAN,
any non-linear, irregular part of the helix axis indicates a kink.
The local helix axis is fitted by random sampling based on the
distances of the backbone atoms to the helix axis. The axis is
extended incrementally residue by residue. MC-HELAN de-
scribes helices as being either linear or kinked. The kinks are
classified as bends (a change in the axis direction with all
residues remaining helical) or disruptions (a change in the axis
direction accompanied by a loss of helical character).

Conclusions

In this work, we have presented the HAXIS method, which
provides a global and a local description of helix distortions
via a global and a local definition of the helix axis. The axis is
derived from a coarse-grained (a residue is represented by the
Ca atom as suitable anchor point) and spline-fitted backbone
line of the helix provided by the APSA method [28]. At each
anchor point of the helix the Frenet frame of the backbone line
is calculated, which leads directly to a vector presentation of
the helix axis: the conformation of each residue contributes to
the winding of the helix and thereby to the axis direction. In
the case of ideal helices, all local axis directions coincide and
lead to one overall axis vector. In the case of a real helix,
irregularities in the winding of the helix are reflected by
different axis directions per residue and therefore a zigzagging
axis line. For determination of the global shape of a helix, the
axis line is smoothed by apolynomial fit of third order and its
curving and twisting calculated.

The majority of all short helices (2–5 turns) is curved and
twisted as is reflected by the distribution of average curva-
ture and torsion. The shorter the helix, the more likely is a
larger distortion from its regular shape. Utilizing the calcu-
lated curvature radius C, the variation ΔC, and the ratio
ηC ¼ ΔC=Cav, helices are classified as being linear (18 %),
moderately curved (54 %), or strongly curved (28 %). Long
helices are preferentially linear and seem to be more resis-
tant to distortions.

Both with the global and the local description, the
kinking of a helix can be assessed quantitatively. Very
reliable is the analysis of local curvature of the helix axis.
At the position of a helix kink, a characteristic peak pattern
(quadruple configuration of peaks) is found, which facili-
tates identification of kinking (curvature κ > 1.0 Å−1) and
strongly curved helices (0.4<κ≤1.0 Å−1). On the average,
5.8 % of protein helices are kinked.

The characteristic curvature changes are used to identify
the start and exit of a helix. Alternatively the rise parameters
ai can be used for this purpose or for the differentiation
between helices and coils.

The approach presented in this work has several advan-
tages compared to those previously published. The majority
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of the latter methods is based on the assumption of a regular
bending of the helix axis as described by a second-order
polynomial (“circle fitting”), which leads to an oversimpli-
fication of the axis curvature radius C. Twisting of the helix
axis can no longer be described in this way because bending
as given by a second order polynomial takes place exclu-
sively in one plane. HAXIS corrects the simplified helix
presentations and quantifies axis torsion.

The HAXIS method described in this work is the basis
for a rapid classification and comparison of calculated and
measured helix structures and in this way can be used in
connection with a coarse-grained description of proteins as
will be described elsewhere.

Acknowledgments This work was supported financially by the
National Science Foundation, Grant CHE 1152357. We thank Southern
Methodist University for providing computational resources.

References

1. Richardson J (1981) Adv Protein Chem 34:167
2. Petsko G, Ringe D (2004) Protein structure and function.

New Science, London
3. Pace C, Scholtz J (1998) Biophys J 75:422
4. Lopera J, Sturgis J (2005) J Mol Graph Model 23:305
5. Hu C, Koehl P (2010) Proteins 78:1736
6. Tatulian S (2008) Comput Biol Chem 32:370
7. Chothia C, Levitt M, Richardson D (1981) J Mol Biol 145:215
8. Walther D, Eisenhaber F, Argos P (1996) J Mol Biol 255:536
9. Lee S, Chirikjia G (2004) Biophys J 86:1105

10. Dalton J, Michalopoulos I, Westhead D (2003) Bioinformatics
19:1298

11. Singh A, Brutlag D (1997) Proc Int Conf Intell Syst Mol Biol 5:284
12. Gibrat J, Madej T, Bryant S (1996) Curr Opin Struct Biol 6:377
13. Åqvist J (1986) Comput Chem 10:97
14. Enkhbayar P, Damdinsuren S, Osaki M, Matsushima N (2008)

Comput Biol Chem 32:307
15. Barlow D, Thornton J (1988) J Mol Biol 201:601
16. Kahn P (1989) Comput Chem 13:185
17. Christopher J, Swanson R, Baldwin T (1996) Comput Chem

20:339
18. Nievergelt Y (1997) Comput Aided Geomet Des 14:707
19. Blundell T, Barlow D, Borkakoti N, Thornton J (1983) Nature

306:281
20. Kumar S, Bansal M (1998) Biophys J 75:1935
21. Bansal M, Kumar S, Velavan R (2000) J Biomol Struct Dyn

17:811
22. Kumar S, Bansal M (1996) Biophys J 71:1574
23. Sugeta H, Miyazawa T (1967) Biopolymers 5:673
24. Sklenar H, Etchebest C, Lavery R (1989) Proteins 6:46

25. Lee H, Choi J, Yoon S (2007) Protein J 26:556
26. Kahn P (1989) Comput Chem 13:191
27. Langelaan D, Wieczorek M, Blouin C, Rainey J (2010) J Chem Inf

Model 50:2213
28. Ranganathan S, Izotov D, Kraka E, Cremer D (2009) Proteins

76:418
29. Guo Z, Cremer D (2012) APSA12, Automated protein structure

analysis. Southern Methodist University, Dallas, TX
30. Berman H, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H,

Shindyalov I, Bourne P (2000) Nucleic Acids Res 28:235
31. Hall S, Roberts K, Vaidehi N (2009) J Mol Graph Model 27:944
32. Kauko A, Illergård K, Elofsson A (2008) J Mol Biol 380:170
33. Riek R, Rigoutsos I, Novotny J, Graham R (2001) J Mol Biol

306:349
34. Harris T, Graber A, Covarrubias M (2003) Am J Physiol Cell

Physiol 285:C788
35. Reddy T, Ding J, Li X, Sykes B, Rainey J, Fliegel L (2008) J Biol

Chem 283:22018
36. Shaw A, McRee D, Vacquier V, Stout C (1993) Science 262:1864
37. Kühnel W (2002) Differential Geometry: Curves-Surfaces-

Manifolds. American Mathematical Society, Providence, RI
38. Armen R, Alonso D, Daggett V (2003) Protein Sci 12:1145
39. Nordlund P, Eklund H (1993) J Mol Biol 232:123
40. Lovejoy B, Cascio D, Eisenberg D (1993) J Mol Biol 234:640
41. Tronrud D, Monzingo A, Matthews B (1986) Eur J Biochem

157:261
42. Kamphuis I, Kalk K, Swarte M, Drenth J (1984) J Mol Biol

179:233
43. Phillips S, Schoenborn B (1981) Nature 292:81
44. Dijkstra B, Kalk K, Hol W, Drenth J (1981) J Mol Biol 147:97
45. Takano T (1984) Refinement of myoglobin and cytochrome c. In:

Hall S, Hashida T (eds) Methods and applications in crystallo-
graphic computing. Oxford University Press, Oxford, pp 262–272

46. Rees D, Lewis M, Lipscomb W (1983) J Mol Biol 168:367
47. Walsh M, Schneider T, Sieker L, Dauter Z, Lamzin V, Wilson K

(1998) Acta Crystallogr D: Biol Crystallogr 54:522
48. Wlodawer A, Svensson L, Sjolin L, Gilliland G (1988) Biochemistry

27:2705
49. Bode W, Epp O, Huber R, Laskowski M, Ardelt W (1985) Eur J

Biochem 147:387
50. Steigemann W, Weber E (1979) J Mol Biol 127:309
51. Vojtechovsky J, Chu K, Berendzen J, Sweet R, Schlichting I

(1999) Biophys J 77:2153
52. Sugiura I, Nureki O, Ugaji-Yoshikawa Y, Kuwabara S, Shimada A,

Tateno M, Lorber B, Giege R, Moras D, Yokoyama S et al (2000)
Structure 8:197

53. Romier C, Dominguez R, Lahm A, Dahl O, Suck D (1998)
Proteins 32:414

54. Hough E, Hansen L, Birknes B, Jynge K, Hansen S, Hordvik A,
Little C, Dodson E, Derewenda Z (1989) Nature 338:357

55. Silva M, Poland B, Hoffman C, Fromm H, Honzatko R (1995) J
Mol Biol 254:431

56. Fedorov A, Shi W, Kicska G, Fedorov E, Tyler P, Furneaux R,
Hanson J, Gainsford G, Larese J, Schramm V et al (2001)
Biochemistry 40:853

57. Nagar B, Jones R, Diefenbach R, Isenman D, Rini J (1998)
Science 280:1277

J Mol Model (2013) 19:2901–2911 2911


	Description of local and global shape properties of protein helices
	Abstract
	Introduction
	Computational procedures
	Results and discussion
	Global description of helix shape utilizing properties of its axis
	Identification of kinked helices
	Comparison with other descriptions of the helix axis
	Local description of helix winding utilizing properties of its axis
	Comparison with other methods

	Conclusions
	References


